Name:
Class: \qquad Date: \qquad
Instructions: Answer the following questions. Show ALL work for problems to receive full credit. Make sure to include proper units and significant figures for all answers.
[3 pt] 1. What is the molecular weight of $\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{3}$

1. \qquad
[3 pt] 2. What is the molecular weight of $\mathrm{Sc}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}$
2. \qquad
[5 pt] 3. What is the molecular weight of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
3. \qquad
[3 pt] 4. What is the Molecular Weight of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
4. \qquad
[4 pt] 5. How many mols of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are in 100.0 grams of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
5. \qquad
[5 pt] 6. How much (in milligrams) does 25.5 mols of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ weigh?
6. \qquad
[5 pt] 7. How many grams does 3.7×10^{24} molecules of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ weigh?
7. \qquad
[5 pt] 8. How many atoms of Oxygen are in 130.5 grams of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
8. \qquad
[4 pt] 9. How many mols of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are in 125.0 grams of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
9. \qquad
[4 pt] 10. How much (in milligrams) does 12.5 mols of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ weigh?
[4 pt] 11. How many grams does 2.4×10^{25} molecules of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ weigh?
[5 pt] 12. How many atoms of Oxygen are in 240.5 grams of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
[5 pt] 13. What is the Molecular Weight of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
[5 pt] 14. How many mols of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ are in 195.0 grams of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
[5 pt] 15. How much (in kilograms) does 125 mols of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ weigh?
[5 pt] 16. How many grams does 2.87×10^{25} molecules of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ weigh?
[5 pt] 17. How many mols of Sulfur are in 15.0 mL of Sulfur?
10. \qquad
11. \qquad
12. \qquad
13. \qquad
14. \qquad
15. \qquad

CHE 101 - Practice Exam 3

[2 pt] 18. List the 7 elements that are always found as diatomics.
[2 pt] 19. List the (5) elements commonly found as gases (do not include the Noble gases) and (2) liquids.
[2 pt] 20. List the 8 small stable molecular compounds commonly found as gases.
[6 pt] 21. Write the complete chemical reaction for the 3 common decomposition reactions.
[5 pt] 22. List 5 signs that a chemical reaction has occurred (on paper or in lab).
[4 pt] 23. Jay was busy last night and discovered 3 more new elements (J7, J8, and J9). Given the following 2 reactions determine where they belong in the Activity Series. Explain.
Reaction 1: $\underline{2}^{2} \mathrm{~J}_{7}(\mathrm{~s})+1 \mathrm{~J}_{8}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \longrightarrow \underline{2} \mathrm{~J}_{7} \mathrm{NO}_{3}(\mathrm{aq})+\underline{1} \mathrm{~J}_{8}(\mathrm{~s})$
Reaction 2: __ $\mathrm{J}_{9}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+\ldots \mathrm{J}_{7}(\mathrm{~s}) \longrightarrow \mathrm{NR}$
[4 pt] 24. \qquad $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+$ \qquad $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{AsO}_{4}(\mathrm{aq}) \longrightarrow$
$[4 \mathrm{pt}] 25$. \qquad $\mathrm{Na}(\mathrm{s})+$ $\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow$
[4 pt] 26. \qquad $\mathrm{C}_{3} \mathrm{H}_{8}+\ldots \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$
[4 pt] 27. \qquad $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\ldots \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow$
[4 pt] 28. __Ag (s) +__ $\mathrm{MgI}_{2}(\mathrm{aq}) \longrightarrow$
$[4 \mathrm{pt}] 29 . \ldots \mathrm{Na}_{3} \mathrm{AsO}_{4}(\mathrm{aq})+\ldots \mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow$
[4 pt] 30. \qquad $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\ldots \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow$
[4 pt] 31. \qquad $\mathrm{NaCl}(\mathrm{aq})+\ldots \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \longrightarrow$

$$
[4 \mathrm{pt}] 32 . \ldots \mathrm{F}_{2}(\mathrm{~g})+\ldots \mathrm{KI}(\mathrm{aq}) \longrightarrow
$$

$[4 \mathrm{pt}] 33 . \ldots \mathrm{KOH}(\mathrm{aq})+\ldots \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow$
24. \qquad
25. \qquad
26. \qquad
27. \qquad
28. \qquad
29. \qquad
30. \qquad
31. \qquad
32. \qquad
33. \qquad
[3 pt] 34. $_\mathrm{MgBr}_{2}(\mathrm{aq})+\ldots \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow$
$[3 \mathrm{pt}] 35 . _\mathrm{Na}(\mathrm{s})+\ldots \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq}) \longrightarrow$
$[3 \mathrm{pt}] 36 . _\mathrm{CH}_{4}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$
$[3 \mathrm{pt}] 37 . \ldots \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\ldots \mathrm{HCl}(\mathrm{aq}) \longrightarrow$
[3 pt] 38. __ $\mathrm{KCl}(\mathrm{aq})+\underset{\sim}{\mathrm{Ni}(\mathrm{s})} \longrightarrow$
[3 pt] 39. \qquad $\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq})+\ldots \mathrm{MgCrO}_{4}(\mathrm{aq}) \longrightarrow$
$[3 \mathrm{pt}] 40 . \ldots \mathrm{F}_{2}(\mathrm{~g})+\ldots \mathrm{HCl}(\mathrm{aq}) \longrightarrow$
[3 pt] 41. $_\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\ldots \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow$
$[3 \mathrm{pt}] 42 . _\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\underset{\sim}{\mathrm{NaOH}(\mathrm{aq})} \longrightarrow$
[3 pt] 43. $_\mathrm{ZnSO}_{4}(\mathrm{aq})+\ldots \mathrm{Mg}(\mathrm{s}) \longrightarrow$
34. \qquad
35. \qquad
36. \qquad
37. \qquad
38. \qquad
39. \qquad
40. \qquad
41. \qquad
42. \qquad
43. \qquad
$[3 \mathrm{pt}] 44 . \ldots \mathrm{CoCl}_{3}(\mathrm{aq})+\ldots \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow$
44.
$[3 \mathrm{pt}] 45 . \ldots \mathrm{AgNO}_{3}(\mathrm{aq})+\ldots \mathrm{PbCl}_{2}(\mathrm{aq}) \longrightarrow$
[3 pt] 46. $_\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{l})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$
$[3 \mathrm{pt}] 47 . \ldots \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\ldots \mathrm{ZnBr}_{2}(\mathrm{aq}) \longrightarrow$
$[3 \mathrm{pt}]$ 48. $_\mathrm{NaOH}(\mathrm{aq})+\ldots \mathrm{NH}_{4} \mathrm{Cl}() \longrightarrow$
[3 pt] 49. __ $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{l})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$
[3 pt] 50. $_\mathrm{KOH}()+\ldots\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq}) \longrightarrow$
$[3 \mathrm{pt}] 51 . _\mathrm{HF}(\mathrm{aq})+\ldots \mathrm{KOH}(\mathrm{aq}) \longrightarrow$
$[3 \mathrm{pt}] 52 . _\mathrm{I}_{2}(\mathrm{~s})+\ldots \mathrm{CaBr}_{2}(\mathrm{aq}) \longrightarrow$
$[3 \mathrm{pt}] 53 . _\mathrm{K}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\ldots \mathrm{HBr}(\mathrm{aq}) \longrightarrow$
47.
46.
48.
49.
50.
51.
52.
\qquad
\qquad
\qquad
\qquad
\qquad
[3 pt] 54. $_\mathrm{NaOH}(\mathrm{aq})+\ldots \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow$
$[3 \mathrm{pt}] 55 . \ldots \mathrm{CaCl}_{2}(\mathrm{aq})+\ldots \mathrm{F}_{2}(\mathrm{~g}) \longrightarrow$
$[3 \mathrm{pt}] 56 . _\mathrm{K}(\mathrm{s})+\ldots \mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \longrightarrow$
[3 pt] 57. __ $\mathrm{NaCl}(\mathrm{aq})+\ldots \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow$
[3 pt] 58. $_\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$
$[3 \mathrm{pt}] 59 . _\mathrm{ZnSO}_{4}(\mathrm{aq})+\ldots \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq}) \longrightarrow$
[3 pt] 60. \qquad $\mathrm{Al}(\mathrm{s})+\ldots \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow$
$[3 \mathrm{pt}] 61 . _\mathrm{MgCl}_{2}(\mathrm{aq})+\ldots \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \longrightarrow$
$[3 \mathrm{pt}] 62 . _\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\ldots \mathrm{NaOH}(\mathrm{aq}) \longrightarrow$
54.
55.
56.
57.
58. \qquad
59. \qquad
60. \qquad
61. \qquad
62. \qquad
[48 pt] 63. Complete and balance the following reactions. Indicate the state (solid, liquid or gas) of the products when known. If heat is produced as a product include it. If no reaction occurs write NR in the answer blank.
(a) $__{—} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\ldots \mathrm{Na}(\mathrm{s}) \longrightarrow$
(b) $_\mathrm{NaCl}(\mathrm{aq})+\ldots \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \longrightarrow$
(c) $\ldots \mathrm{F}_{2}(\mathrm{~g})+\ldots \mathrm{KI}(\mathrm{aq}) \longrightarrow$
(d) $_\mathrm{Al}(\mathrm{s})+\ldots \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow$
$(\mathrm{e}) _\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\ldots \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow$
(f) $_\mathrm{KOH}(\mathrm{aq})+\ldots \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow$
$(\mathrm{g}) _\mathrm{Na}_{3} \mathrm{AsO}_{4}(\mathrm{aq})+\ldots \mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow$
(h) $_\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\ldots \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq}) \longrightarrow$
(i) $\ldots \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{l})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$
$(\mathrm{j}) \ldots \mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(\mathrm{aq})+\ldots \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{aq}) \longrightarrow$
$(\mathrm{k}) _\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\ldots \mathrm{HCl}(\mathrm{aq}) \longrightarrow$
(1) $\ldots \mathrm{Sn}(\mathrm{s})+\ldots \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq}) \longrightarrow$

63(a)

63(b)

63(c) \qquad

63(d) \qquad

63(e) \qquad

63(f) \qquad

63(g) \qquad

63(h) \qquad

63(i) \qquad

63(j) \qquad

63(k) \qquad

63(1) \qquad

CHE 101 - Practice Exam 3

[6 pt] 64. You work in sandwich shop! You have the following ingredients available: 35 slices of bread, 21 slices of ham, 50 slices of turkey and 15 slices of cheese. The following wonderful recipe is being used to make amazingly good sandwichs:
$\underline{2}$ slices bread $+\underline{3}$ slices ham $+\underline{2}$ slice turkey $+\underline{1}$ slice of cheese $\longrightarrow \underline{1}$ amazing sandwich.
(a) What is the limiting ingredient?
(b) Amount of Bread left:
\qquad
\qquad
(c) Amount of Ham left: \qquad
(d) Amount of Turkey left: \qquad
(e) Amount of Cheese left: \qquad
(f) Number of amazing sandwichs made:
64(f) \qquad
[6 pt] 65. Jay is baking apple pies using the following recipe: 3 Apples +2 cups sugar +5 teaspoons Cinnamon +4 cups Flour $\longrightarrow 2.5$ apple pies. In my cupboard I have the following: 24 apples, 10 cups of Sugar, 30 teaspoons of Cinnamon and 25 cups of Flour. Answer the following questions:
(a) What is the limiting ingredient?
$65(\mathrm{a})$
(b) Amount of Apples left:
(c) Amount of Sugar left:
\qquad
$65(\mathrm{c})$
(d) Amount of Cinnamon left:

65(d) \qquad
(e) Amount of Flour left:
$65(\mathrm{e})$
(f) Number of pies made: \qquad

CHE 101 - Practice Exam 3

[6 pt] 66. You work in pizza shop! You have the following available: 35 cups Pepperoni, 30 cups Italian sausage, 50 cups Mozzarella and 12 onions. The following wonderful recipe is being used to make amazingly good pizza:
$\underline{2.5}$ cups Pepperoni $+\underline{1.5}$ cup Italian sausage $+\underline{3}$ cups Mozzarella $+\underline{1}$ onion $\longrightarrow \underline{5}$ amazing pizza's.
(a) What is the limiting ingredient?
(b) Amount of Pepperoni left:
\qquad
\qquad
(c) Amount of Italian sausage left: \qquad
(d) Amount of Mozzarella left: \qquad
(e) Amount of Onions left:

66(e) \qquad
(f) Number of amazing pizza's made:

66(f) \qquad
[30 pt] 67. You perform a reaction in lab starting with 25.0 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ and $50.0 \mathrm{~g} \mathrm{O} \mathrm{O}_{2}$. Some useful MW: $\mathrm{C}_{3} \mathrm{H}_{8}=$ $44.1 \mathrm{~g} / \mathrm{mol}, \mathrm{O}_{2}=32.0 \mathrm{~g} / \mathrm{mol}, \mathrm{CO}_{2}=44.0 \mathrm{~g} / \mathrm{mol}$ and $\mathrm{H}_{2} \mathrm{O}=18.0 \mathrm{~g} / \mathrm{mol}$. Show CO2l calculations in the space provided.

$$
\underline{1} \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~s})+\underline{5} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \underline{3} \mathrm{CO}_{2}(\mathrm{~g})+\underline{4} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+150 \mathrm{~kJ}
$$

(a) What is the limiting reactant?
(b) How many grams of the excess reagent will be left over?
(c) What is the theoretical yield in grams of CO_{2} in grams?
\qquad
67(b) \qquad

67(c) \qquad
(d) What is the percent yield if you performed the reaction and produced $23.067(\mathrm{~d})$ \qquad grams of CO_{2} ?
(e) How many Joules of heat will be released?
(f) How much $\mathrm{H}_{2} \mathrm{O}$ will be produced?

67(f) \qquad
(g) Does the reaction obey the Law of Conservation of Mass. Explain/prove your answer. $67(\mathrm{~g})$

CHE 101 - Practice Exam 3

[15 pt] 68. You perform a reaction in lab starting with 60.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and 50.0 g Al. Show all calculations in the space provided.

$$
\underline{1} \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\underline{2} \mathrm{Al}(\mathrm{~s}) \longrightarrow \underline{2} \mathrm{Fe}(\mathrm{l})+\underline{1} \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{l})+135 \mathrm{~kJ}
$$

(a) What is the limiting reactant?

68(a) \qquad
(b) How many grams of the excess reagent will be left over? \qquad
(c) What is the theoretical yield in grams of Fe in grams? \qquad
(d) What is the percent yield if you performed the reaction and produced 23.0 68(d) \qquad grams of Fe ?
(e) How many Joules of heat will be released? \qquad

CHE 101 - Practice Exam 3

[12 pt] 69. Answer the following questions about the reaction below. Clearly label and show work in the space provided below, or on a separate sheet of paper.
Hint: $1 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{NaI}(\mathrm{aq})+75.0 \mathrm{~kJ} \longrightarrow 3 \mathrm{NaNO}_{3}(\mathrm{aq})+1 \mathrm{AlI}_{3}(\mathrm{~s})$.
(a) What is the limiting reagent if you start with 15.0 grams of NaI
and 10.0 grams of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$?
(b) What is the theoretical yield of AlI_{3} in grams?
(c) How many grams of the excess reagent will be left over?
\qquad
69(a)
\qquad
69(c) \qquad
(d) What is the percent yield if you performed the reaction in lab and produced 12.50 grams of AlH_{3} ?
(e) Is the reaction exothermic or endothermic?
(f) How much energy (in Joules) is consumed/produced in the reaction?

69(e) \qquad
69(f) \qquad
[10 pt] 70. Answer the following questions about the reaction below. Clearly label and show work in the space provided below, or on a separate sheet of paper.
Hint: $3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow 6 \mathrm{HOH}(\mathrm{l})+1 \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+320 . \mathrm{kJ}$.
(a) What is the limiting reagent if you start with 25.0 grams of $\mathrm{Mg}(\mathrm{OH})_{2}$ and 25.0 grams of $\mathrm{H}_{3} \mathrm{PO}_{4}$?
(b) What is the theoretical yield in grams of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in grams?
(c) How many grams of the excess reagent will be left over?
(d) What is the percent yield if you performed the reaction and produced 12.50 grams of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
(e) Is the reaction exothermic or endothermic?
(f) How much energy (in Joules) is consumed/produced in the reaction?

70(d) \qquad
70(a) \qquad

70(b) \qquad

70(c) \qquad

70(e) \qquad

70(f) \qquad
[5 pt] 71. Given the reaction: $\underset{\sim}{2} \mathrm{NaOH}(\mathrm{aq})+\underset{1}{1} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \underline{1} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\underset{2}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) 71$. how many grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ can be produced from 25.0 grams of NaOH . Some useful MW: $\mathrm{NaOH}=40.0 \mathrm{~g} / \mathrm{mol}, \mathrm{H}_{2} \mathrm{SO}_{4}=98.0 \mathrm{~g} / \mathrm{mol}, \mathrm{Na}_{2} \mathrm{SO}_{4}=142.1 \mathrm{~g} / \mathrm{mol}$ and $\mathrm{H}_{2} \mathrm{O}=$ $18.0 \mathrm{~g} / \mathrm{mol}$.
[5 pt] 72. How many grams of $\mathrm{H}_{2} \mathrm{O}$ can be produced by burning 38.75 grams of $\mathrm{C}_{2} \mathrm{H}_{6}$? 72. $\underline{2} \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\underline{7} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \underline{4} \mathrm{CO}_{2}(\mathrm{~g})+\underline{6} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
[4 pt] 73. How many grams of NaOH are required to make 375 mL of 0.550 M NaOH ?
73. \qquad
[5 pt] 74. What is the Molarity of a solution made from 35.0 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ added to 450.0 mL of 74 . water?
[5 pt]
75. In a titration, it took 125.0 mL of $0.38 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ to neutralize 55.0 mL of an unknown 75 . concentration of $\mathrm{Ca}(\mathrm{OH})_{2}$. What is the concentration of the $\mathrm{Ca}(\mathrm{OH})_{2}$ solution?
$\underline{2} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\underline{3} \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow \underline{1} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{aq})+\underline{6} \mathrm{H}_{2} \mathrm{O}$
[5 pt] 76. How many mL of $0.350 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution are required to neutralize 138.5 mL of 0.82576 .
M NaOH solution?
$\xrightarrow[1]{ } \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\underline{2} \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \underline{1} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\underline{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

CHE 101 - Practice Exam 3

[5 pt] 77. How many grams of H_{2} gas can be produced if 75.0 g of Na are reacted with 600.0 mL 77 .
of $3.25 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
$\underline{2} \mathrm{Na}(\mathrm{s})+\underline{1} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \underline{1} \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\underline{1} \mathrm{H}_{2}(\mathrm{~g})$
[4 pt] 78. How many grams of HCl are required to make 750.0 mL of 3.000 M HCl ?
[4 pt] 79. What is the molarity of a solution made from 15.0 grams of AgNO_{3} dissolved in 275.0 mL of water?
78. \qquad
79. \qquad
[8 pt] 80. Answer the following questions about the given the reaction:
$2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow 1 \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+12.0 \mathrm{~kJ}$
(a) How many grams of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ can be produced from 125.0 grams of $\mathrm{Mg}(\mathrm{OH})_{2} .80$ (a) \qquad
(b) How many grams of $\mathrm{H}_{3} \mathrm{PO}_{4}$ are required to react with 11.0 grams of $\mathrm{Mg}(\mathrm{OH})_{2} .80$ (b) \qquad

CHE 101 - Practice Exam 3

[5 pt] 81. Bob performed a titration and noted that 75.0 mL of $0.65 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ completely neutralized 250.0 mL of HCl . What is the Molarity of the HCl solution?
Hint: $1 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{HOH}(\mathrm{l})+\mathrm{MgCl}_{2}(\mathrm{aq})$.
81.
[5 pt] 82. How many mL of 0.55 M NaOH are required to neutralize 195.0 mL of $1.87 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$? Hint: $1 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow 2 \mathrm{HOH}(\mathrm{l})+1 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$.
82.
[4 pt] 83. What is the molarity of a solution made from 25.0 grams of $\mathrm{Mg}(\mathrm{OH})_{2}$ dissolved in 175.0 mL of water?
83. \qquad
[4 pt] 84. How many grams of HCl are required to make 105.0 mL of 2.75 M HCl ?
84. \qquad
[4 pt] 85. Given the reaction: $2 \mathrm{NaOH}(\mathrm{aq})+1 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow 1 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ how many grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ can be produced from 25.0 grams of NaOH .
85. \qquad

CHE 101 - Practice Exam 3

[5 pt] 86. Todd performed a titration and noted that 115.0 mL of $0.85 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ completely neutralized 135.0 mL of $\mathrm{H}_{3} \mathrm{PO}_{4}$. What is the Molarity of the $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution? Hint: $3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow 6 \mathrm{HOH}(\mathrm{l})+\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$.
86. \qquad
[5 pt] 87. How many mL of $3.25 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ are required to neutralize 240.0 mL of $1.25 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$? Hint: $3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \longrightarrow 6 \mathrm{HOH}(\mathrm{l})+\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$. 87.

