	CHE101 - Extr	a Practice - Ch 9 - F21 -	Ver 1 Score:/165
Name: _	Clas	SS:	Date:
Ins cre	structions: Answer the following quedit. Make sure to include proper u Complete the table below illustrating the	nits and significant figure	es for all answers.
	Property	Chemical Bonds	IMF Forces
	Strength of Attraction		
	Properties (Chemical or Physical)		
	Represented by (in drawings):		
[12 pt] 2.	For each of the IMF discussed in class, of between TWO molecules. Properly lab		example illustrating the attraction
	(a) London Dispersion Forces (LDF)	(c) Hydrogen I	Bonding (HB)
	(b) Dipole-Dipole Forces (DD)	(d) Ion-Dipole	Forces (ID)

- 3. Which intermolecular force [Dipole-Dipole (DD), Hydrogen Bonding (HB), London Dispersion (LDF), or Ionic (I)] is best described by each of the following statements. If the statement describes more then one force, put down all the forces it applies to. If no force is described by the statement place NONE in the answer blank.
 - (a) Attractive force between polar and nonpolar molecules.

3(a) _____

(b) Primarily electrostatic in nature (opposites attract).

3(b) _____

(c) Attractive force between nonpolar molecules.

- 3(c) _____
- (d) Result of a temporarily (or instananeous) dipoles in atoms or molecules.
- 3(d) _____

(e) Increases in strength depending on size of molecule.

3(e) _____

(f) Is present in between all molecules.

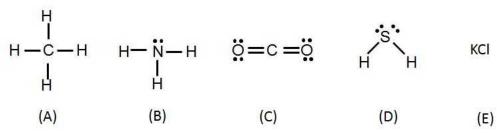
3(f) _____

(g) The strongest attractive force.

3(g) _____

(h) Primarily between Metal and Nonmetals

3(h) _____


(i) Attractive force between polar molecules.

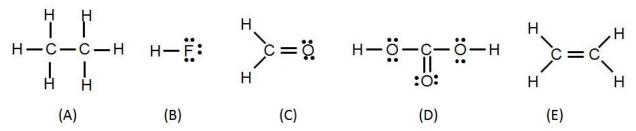
3(i) _____

(j) The weakest attractive force.

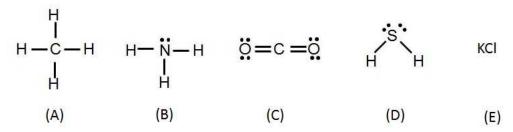
3(j) _____

[10 pt] 4. Answer the following questions about the pair of molecules pictured below. Explain.

(a) Which molecule has the lower Boiling Point?

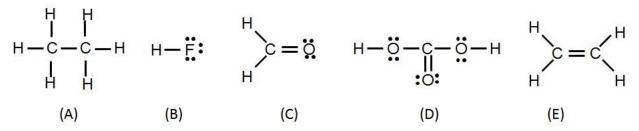

4(a) _____

(b) Which molecule has the lower Vapor Pressure?


- 4(b) _____
- (c) If 100 g of each molecule was added to separate beakers of water would lower the freezing point the most? 4(c)
- (d) Which molecule is more likely to to dissolve in water?

- 4(d) _____
- (e) Which molecule has the strongest attractive forces between the molecules? 4(e)

[5 pt] 5. For each of the molecules below, list which IMF are present between the molecules. Order the molecules (A < B < C etc) from lowest B_p to Highest B_p Explain.



- [4 pt] 6. Using the molecules in the previous question:
 - (a) Which molecule(s) are more likely to dissolve in water? Explain
 - (b) Which molecules are more likely to dissolve in pentane (CH3-CH2-CH2-CH3). Explain.
- [6 pt] 7. For each of the molecules below, list which IMF are present between the molecules. Order the molecules (A < B < C etc) from lowest B_p to Highest B_p Explain.

- [5 pt] 8. Using the molecules in the previous question:
 - (a) Which molecule(s) are more likely to dissolve in water? Explain. 8(a) _____
 - (b) Which molecule(s) are more likely to dissolve in pentane 8(b) ______ (CH₃CHCH₂CH₂CH₃). Explain.

[6 pt] 9. For each of the molecules below, list which IMF are present between the molecules. Order the molecules (A < B < C or label one end low, one end high) from lowest B_p to highest B_p Explain.

- [4 pt] 10. Using the molecules in the previous question:
 - (a) Which molecule(s) are more likely to dissolve in water? Explain.
- 10(a) _____
- (b) Which molecule(s) are more likely to dissolve in pentane 10(b) ______ (CH₃CH₂CH₂CH₂CH₃). Explain.
- $[6~{\rm pt}]$ 11. Sketch a picture showing how ${\rm AlCl}_3$ will dissolve in water. What is the attractive force between the ions and water molecules?

[6 pt] 12	. Nan	ne each phase change shown below:	
	4	(a)	
		Gas (b)	
	P	\mathbb{B} \mathbb{C} (c)	
		Liquid (d)	
		$ \begin{array}{c c} \hline & \hline $	
	4	$ \begin{array}{cccc} & & & & & & & & & \\ & & & & & & & & & \\ & & & & $	
		Solid	
[5 pt] 13		each of the following properties indicate whether they are (D)irectly propional, or (N)ot related.	ortional, (I)nversly pro
	(a)	Vapor Pressure and mols of solute in a solution	13(a)
	(b)	Vapor Pressure and Amount of Liquid in a flask	13(b)
	(c)	Vapor Pressure and Boiling Point	13(c)
	(d)	Vapor Pressure and Intermolecular Forces (IMF)	13(d)
	(e)	Atmospheric Pressure and Vapor Pressure	13(e)
[5 pt] 14	. Ans	wer the following questions about solubility: (D)ecrease, (I)ncrease, or (N)o change.
	(a)	If temperature is increased the solubility of a solid in a liquid will?	14(a)
	(7.)		(2.)
	(b)	If the temperature is decreased the solubility of a gas in a liquid will?	14(b)
	(c)	If the pressure is decreased the solubility of a solid in a liquid will?	14(c)
	(d)	If the pressure is decreased the solubility of a gas in a liquid will?	14(d)

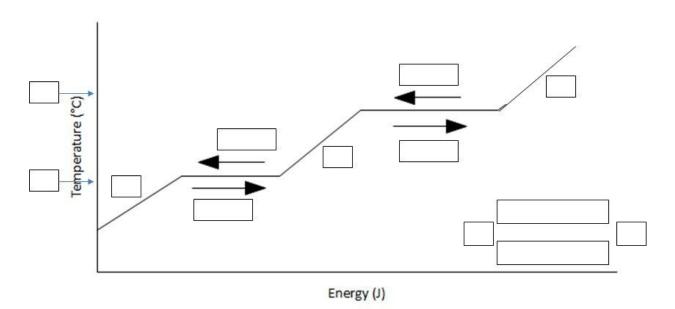
(e) If the particle size is increased the rate of dissolving a solid in a liquid will? 14(e) _____

CHE 101 - EP - Ch 9

[10 pt] 15.		each of the following properties indicate whether they are (D)irectly propertional, or (N)ot related.	ortional,	(I)nversly pro-
	(a)	Vapor Pressure and Boiling Point	15(a)	
	(b)	Vapor Pressure and Intermolecular Forces (IMF)	15(b)	
	(c)	Vapor Pressure and mols of solute in a solution	15(c)	
	(d)	Intermolecular Forces (IMF) and Melting Point	15(d)	
	(e)	Vapor Pressure and Amount of Liquid in a flask	15(e)	
	(f)	Boiling Point and the mols of solute in a solution	15(f)	
	(g)	Atmospheric Pressure and Vapor Pressure	15(g)	
	(h)	Rate at which Solids dissolve in Liquids and Particle Size	15(h)	
	(i)	Solubility of Solids in Liquids and Temperature	15(i)	
	(j)	Solubility of Gasses in Liquids and Pressure	15(j)	

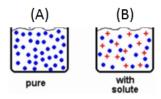
 $[5~\mathrm{pt}]~16.$ Sketch a picture showing how $\mathrm{BaCl_2}$ will dissolve in water. Label all IMF's present.

CHE 101 - EP - Ch 9

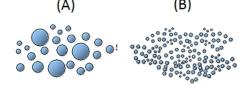

[3 pt]	17.	Is a solution consisting of 55.0 grams of KClO $_3$ in 135 mL of water (U)nsaturated, (S)aturated or (SS)upersaturated at 60 $^{\circ}\mathrm{C}$? Explain.	17
[3 pt]	18.	If you start with a saturated solution of KClO $_3$ at $90^\circ\!\rm C$, and cool it to $50^\circ\!\rm C$, how many grams of KClO $_3$ will precipitate out? Explain.	18
[5 pt]	19.	What is the boiling point of a solution made from 25.0 grams of $\rm C_6H_{12}O_6$ dissolved in 250 g of benzene.	19
[3 pt]	20.	Is a solution consisting of 25.0 grams of $\rm KClO_3$ in 100. mL of water (U)nsaturated (S)aturated or (SS)upersaturated at 40.0 °C? Explain.	20
[3 pt]	21.	If you want to make a saturated solution of $BaCl_2$ and the current solutions is 20.0 of $BaCl_2$ in 100. mL of water at 50.0 °C how much solute will (circle one - dissolve / precipitate) ?) grams 21
[3 pt]	22.	If you have 100 mL of a saturated solution of $\rm BaCl_2$ at 70.0 °C and cool it to 20.0 °C how much solute will precipitate out?	22

CHE 101 - EP - Ch 9

[3 p	ot]	23.	If you have of a saturated solution of $BaCl_2$ in 175 g of water at 30.0 °C and heat it to 90.0 °C how much additional solute will dissolve? 23
[3 p	ot]	24.	Is a solution consisting of 55.0 grams of KClO_3 in 135 mL of water 24(U)nsaturated,(S)aturated or (SS)upersaturated at 60 °C? Explain.
[3 p	ot]	25.	What is the final concentration of a dilute solution made from 150.ml of 2.35 M 25NaOH diluted to a final volume of 500.0 mL
[3 p	ot]	26.	What is the final concentration of a dilute solution made from 150.ml of 2.35 M 26NaOH diluted to a final volume of 500.0 mL
[5 p	ot]	27.	How much energy (in kJ) does it take to make a melt a 125.0 gram ice-cube and 27 then heat the resulting water to 75.0 $^{\circ}$ C?
[3 p	ot]	28.	If you have of a saturated solution of $BaCl_2$ in 175 g of water at 30.0 °C and heat it 28 to 90.0 °C how much additional solute will dissolve?


[3 pt] 29	You work at a secret government research lab to which you were brought blindfolded. 29
[5 pt] 30	. How much energy (in kJ) does it take to make a super hot cup of coffee containing 30
[3 pt] 31	. Is a solution consisting of 55.0 grams of KClO $_3$ in 135 mL of water 31 (U)nsaturated,(S)aturated or (SS)upersaturated at 60 °C? Explain.
[3 pt] 32	. If you start with a saturated solution of KClO $_3$ at $90^\circ\!\rm C$, and cool it to $50^\circ\!\rm C$, how $32.$ many grams of KClO $_3$ will precipitate out? Explain.
[3 pt] 33	. What is the molarity of a solution made by diluting 50.0 mL of 1.35 M HNO $_3$ to a 33 final volume of 175 mL. Explain.

[10 pt] 34. Complete the following heating curve by filling in the boxes with the **NAME** of the appropriate phase transition, temperature, or state of matter. Include the two missing phase transitions in the boxes in the lower right.



 $[3\ \mathrm{pt}]\ 35.$ Which container will have the \mathbf{LOWER} vapor pressure? Explain.

35. _____

[3 pt] 36. Assuming equal amounts (by mass) which will dissolve **FASTER**? Explain? 36. ____

