Name:
 Class:
 Date:

 Instructions:
 Answer the following questions.
 Show ALL work for problems to receive full credit. Make sure to include proper units and significant figures for all answers.

[5 pt] 1. Answer the following questions about the reaction below. The reaction is endothermic. Assume the system is at equilibrium.

 $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g) + 92kJ$

Complete the following table. Indicate changes in concentration of each product and reactant by entering (I)ncrease, (D)ecrease, (N)o change, or a ? for insufficient information to determine.

Stress Applied:	Direction Reaction Shifted	$[N_2]$	$[\mathrm{H}_2]$	$[\mathrm{NH}_3]$
Add $\rm NH_3$				
Remove H_2				
Increase Pressure				
Decrease Temperature				
Increase Volume				

[10 pt] 2. Consider the following system at equilibrium:

 $125kJ + Mg(s) + \underline{2}HCl(aq) \Longrightarrow \underline{1}H_2(g) + \underline{1}MgCl_2(aq)$

- (a) Should you add or remove HCl to increase the production of hydrogen gas? 2(a) _ Explain.
- (b) Should you increase or decrease the temperature to increase the production 2(b) ______ of hydrogen gas? Explain.
- (d) Is the reaction shown an exothermic or endothermic reaction? Explain. 2(d) _____

CHE 101 - EP - Ch 11

[20 pt] 3. Answer the following questions about the reaction below. The reaction is endothermic. Assume the system is at equilibrium.

$$525kJ + \underline{2}A(s) + \underline{3}B(g) \Longrightarrow \underline{6}C(g) + \underline{2}D(g)$$

Stress Applied:	Direction Reaction Shifted	[2A(s)]	[3 B(g)]	[6C(g)]	[2D(g)]
Add C					
Remove B					
Increase Volume					
Increase Pressure					
Increase Temperature					
Add A					
Remove D					
Decrease Temperature					
Decrease Pressure					
Decrease Volume					
Add a Catalyst					

[20 pt] 4. Answer the following questions about the reaction below. The reaction is endothermic. Assume the system is at equilibrium.

$$2\mathrm{C}_{2}\mathrm{H}_{6}(\mathrm{s}) + 7\mathrm{O}_{2}(\mathrm{g}) \Longrightarrow 6\mathrm{H}_{2}\mathrm{O}(\mathrm{g}) + 4\mathrm{CO}_{2}(\mathrm{g}) + 75\mathrm{kJ}$$

Stress Applied:	Direction Reaction Shifted	$[C_2H_6]$	$[O_2]$	[H ₂ O]	$[CO_2]$
Add O ₂					
Remove CO_2					
Increase Volume					
Decrease Pressure					
Increase Temperature					
Lower the Activation Energy					
Remove C_2H_6					
Add H_2O					
Decrease Volume					
Increase Pressure					
Decrease Temperature					

[20 pt] 5. Answer the following questions about the reaction below. The reaction is endothermic. Assume the system is at equilibrium.

$$\underline{1} W(g) + \underline{4} X(g) \Longrightarrow \underline{2} Y(g) + \underline{2} Z(g) + 100.kJ$$

Stress Applied:	Direction Reaction Shifted	[W(s)]	[X(g)]	[Y(g)]	[Z(g)]
Add Z					
Add a Catalyst					
Remove X					
Increase Pressure					
Decrease Pressure					
Decrease Temperature					
Add W					
Increase Volume					
Increase Temperature					
Decrease Volume					
Remove Y					

[20 pt] 6. Answer the following questions about the reaction below. The reaction is endothermic. Assume the system is at equilibrium.

 $\underline{F}_2(g) + \underline{2} HCl(aq) \longrightarrow \underline{1} Cl_2(g) + \underline{2} HF(aq) + 250 kJ$

Stress Applied:	Direction Reaction Shifted	$[F_2(g)]$	[HCl(aq)]	$[Cl_2(g)]$	[HF(aq)]
Add Cl_2					
Remove HCl					
Increase Volume					
Decrease Pressure					
Increase Temperature					
$\operatorname{RemoveF}_2$					
Add HCl					
Decrease Volume					
Increase Pressure					
Decrease Temperature					