[24 pt] 1. Give the IUPAC name of the following molecules

(k)

(a)

(g)

(b)

(h)

(c)

(i)

(d)

(j)

(e)

(k)

(f)

(1)

[20 pt]	2. Draw the following organic(a) 3-heptene	molecules: (f)	benzaldehyde
	(b) 2-hexyne	(g)	toluene
	(c) p-bromobenzoic acid	(h)	2,2-dimethylbutane
	(d) 2,2,3-trimethyl-4-nonyr	ne (i)	4-propyloctane
	(e) 3-phenyl-1-pentene	(j)	$2, 2\hbox{-}{\rm dibromo-3-chloro-6, 6-diethyl-4, 5-dimethyl decane}$

[30 pt] 3. Complete the following reactions in the format given. Assume all substitution reactions are monosubstitutions only. Circle the favored product in a reaction. Include states where appropriate. Be sure to balance any combustion reactions. If no reaction occurs put NR for the products.

- (b) \longrightarrow + $O_2 \longrightarrow$
- (c) + $HCl \longrightarrow$

$$(d) \qquad + \quad \operatorname{Br}_2 \longrightarrow$$

(e)
$$\xrightarrow{500 \text{ K}}$$

$$\text{(f)} \qquad \qquad + \quad \text{Cl}_2 \longrightarrow$$

$$(g) \quad \bigcup_{m=1}^{\infty} + HCl \longrightarrow m +$$

$$\text{(h)} \qquad \qquad + \text{KMnO}_4 + \text{H}_2\text{O} \ \longrightarrow$$

(i)
$$+$$
 HCl \longrightarrow

$$\text{(j)} \qquad \qquad + \text{H}_2 \text{O} \longrightarrow$$

$$(k) \qquad \qquad \overbrace{\qquad \qquad }^{\mbox{CI}} \xrightarrow{\mbox{500 K}}$$

(l)
$$+$$
 $H_2 \longrightarrow$

$$\text{(m)} \qquad \qquad + \quad \text{H}_2\text{O} \longrightarrow$$

(n)
$$OH \xrightarrow{500 \, K} \Delta$$

(o)
$$+$$
 Br₂ \longrightarrow