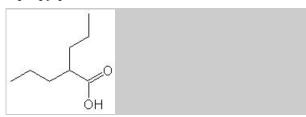
Name:	_ Class:	Date:

[20 pt] 1. Give the IUPAC name of the following molecules

(a)	(b)
	NH ₂
1-pentyl ethanoate	2,2-dimethyl-3-hexanamine
(c)	(d)
OH	NH ₂
3,4,4-trimethylpentanoic acid	2-ethylpentanamide
(e)	
N	
N,N-dimethyl-1-butanamine	N-butyl-N-ethylethanamide
(g)	(h)
ОН	O N
octanoic acid	N,N-dimethylpentanamide
(i)	(j)
	HN
ethyl butanoate	N-methyl-2-hexanamine

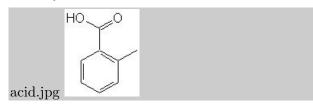
[20 pt] 2. Draw the following molecules using line structures or Lewis structures:


(a) ethyl 2-methylbutanoate

(b) 3-methylbutyl propanoate

(c) 2-propylpentanoic acid

(d) 2,3,4-trimethyl-3-pentanamine


(e) N,N,2-trimethylbutanamide

(f) 2,3-dimethylpentanamide

(g) o-methylbenzoic acid

(h) ethanoic acid

(i) 1-pentyl ethanoate

(j) N-ethyl-3,3-dimethylbutanamide

40 pt] 3. Complete the following reactions in the format given. Assume all substitution reactions are monosubstitutions only. If one product is favored in a reaction circle that product. Include states where appropriate. Be sure to balance any combustion reactions. If no reaction occurs put NR for the products.

(b)
$$\longrightarrow_{NH_2}$$
 + \longrightarrow_{NH_2} + \longrightarrow_{NH} + \longrightarrow_{NH} + \longrightarrow_{H} CI

(e)
$$+$$
 HCI $+$ H₂O \rightarrow 0 $+$ $+$ $+$ CI $+$ CI $+$ CI $+$ $+$ CI $+$ CI

(f)
$$\downarrow^{\circ}$$
 + \downarrow° + \downarrow° + \downarrow° + \downarrow° + \downarrow° + \downarrow°

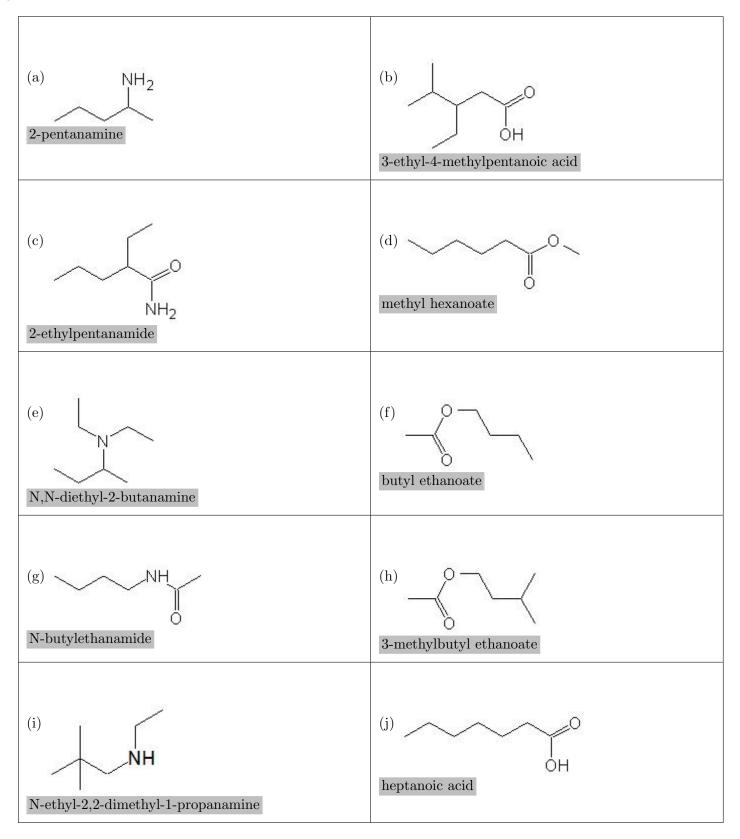
(i)
$$+ H_2O + NaOH \rightarrow + NH_{3(aq)}$$

$$(j)$$
 $+$ NH_3 $+$ HCI

$$(k) \qquad \qquad \downarrow 0 \qquad + \text{ SOCI}_2 \qquad \rightarrow \qquad \boxed{ \qquad \qquad \downarrow 0 \qquad + \text{ HCI} \qquad + \text{ SO}_2 }$$

(1)
$$NH_2$$
 + CI \rightarrow NH + HCI

$$(m) + CI \rightarrow CI$$


(o)
$$+ H_2O$$
 [H*] OH $+ \downarrow O$

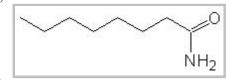
$$(p) \qquad \qquad + \text{ NaOH} \qquad \rightarrow \qquad \boxed{ }$$

$$(q) \qquad + \text{ NaOH} \qquad \rightarrow \qquad \boxed{ \qquad \qquad } \\ \text{NaOH} \qquad \rightarrow \qquad \boxed{ \qquad } \\ \text{NH}_2 \qquad \qquad \\ \text{NH}_3 \qquad \qquad \\ \text{NH}_4 \qquad \qquad \\ \text{NH}_2 \qquad \qquad \\ \text{NH}_2 \qquad \qquad \\ \text{NH}_3 \qquad \qquad \\ \text{NH}_4 \qquad \qquad \\ \text{NH}_2 \qquad \qquad \\ \text{NH}_3 \qquad \qquad \\ \text{NH}_4 \qquad \qquad \\ \text{NH}_4 \qquad \qquad \\ \text{NH}_5 \qquad \qquad \\ \text{NH}_5 \qquad \qquad \\ \text{NH}_5 \qquad \qquad \\ \text{NH}_6 \qquad \qquad \\$$

$$\begin{array}{c|c} (r) & & H_2/Ni \\ & & \Delta \end{array} \qquad \begin{array}{c|c} NH_2 \end{array}$$

(s)
$$\downarrow$$
 NH + CI \rightarrow HCI

[20 pt] 5. Draw the following organic molecules:

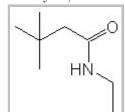

(a) decanoic acid

(b) 2-methylpentyl 4-chlorobutanoate

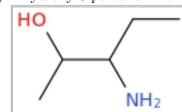
(c) octanamide

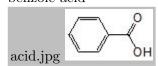
(d) 2-methyl-2-propanamine

(e) 3-phenylhexanoic acid



(f) 4,4-dimethylhexyl 3-methylbutanoate


(g) 2,3,3-trimethyl-2-butanamine


(h) N-ethyl-3,3-dimethylbutanamide

(i) 2-hydroxy-3-pentanamine

(j) benzoic acid

[45 pt] Complete the following reactions in the format given. If one product is favoured in a reaction, circle that product. Include states where appropriate. Be sure to balance any combustion reactions. If no reaction occurs put NR for the products.

(b)
$$\longrightarrow$$
 $H_2O \longleftrightarrow H_2O \longleftrightarrow H_1OH_1$

(e)
$$\longrightarrow$$
 + \longrightarrow NH₂ \longrightarrow NH \longrightarrow H₂O

(g)
$$NH_2 + -CI \rightarrow NH + HCI$$

(i)
$$H_2/Ni$$
 Δ NH_2

(j)
$$+ H_2O$$
 [H*] OH

(l)
$$+ H_2O + NaOH \rightarrow + NH_{3(aq)}$$

(n)
$$\xrightarrow{\text{NH}_2}$$
 $\xrightarrow{\text{H}_2/\text{Ni}}$ $\xrightarrow{\text{NH}_2}$ $+$ H_2O

(o)
$$\stackrel{\circ}{\bigvee}$$
 + NaOH \rightarrow $\stackrel{\circ}{\bigvee}$ $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$ + $\stackrel{\circ}{\bigvee}$ $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$